第四节 免疫球蛋白基因的结构和抗体多样性
Ig分子是由三个不连锁的Igκ、Igλ和IgH基因所编码。Igκ、Igλ和IgH基因定位于不同的染色体上(表2-5)。编码一条Ig多肽链的基因是由在胚系中多个分隔的DNA片段(基因片段)经重排而形成的。1965年Dreyer和Bennet首先提出假说,认为Ig的V区和C区是由分隔存在的基因所编码,在淋巴细胞发育过程中这两个基因发生易位而重排在一起。1976年日本学者利根川进应用DNA重组技术证实了这一假说。利根川进由此获得1987年医学和生理学诺贝尔奖。
表2-5 免疫球蛋白基因定位
编码多肽链 | 基因符号(人) | 基因染色体定位 | ||
人 | 小鼠 | |||
κ轻链 | Igκ | 2 | 6 | |
λ轻链 | Igλ | 22 | 16 | |
重链 | IgH | 14 | 12 | |
(一)重键V区基因
H链V区是由V、D、J三种基因片段经重排后组成。
1.H链V区基因组成
(1)V基因片段:小鼠VH基因段约为250~1000,人的VH基因片段约为100。V基因片段编码VH的信号序列和V区靠N端98个氨基酸残基,包括CDR1和CDR2。
(2)D基因片段:D是指多样性(diversity)。D基因片段仅存在于H链,不存在于L链。小鼠DH共有12个片段,人的DH片段的数目还不完全清楚,可能有10~20个左右。D片段编码H链CDR3中大部分氨基酸残基。
(3)J基因片段:J是连接(joining)的意思。JH连接V基因片段和C基因片段。小鼠JH有4个,人有9个JH片段,其中6个是有功能的。J基因片段编码CDR3的其余部分氨基酸残基和第4个骨架区。
2.H链V区基因的移位 首先发生D与J基因片段的连接形成D-J,然后V基因片段与D-J基因片段连接。H链V区基因的易位和连接是通过七聚体-间隔序列-九聚体识别信号和重组酶而完成的。
(二)重链C区基因
1.C基因片段小鼠H链区基因片从5’端到3’排列的顺序是Cμ-Cδ-Cγ3-Cγ1-Cγ2b-Cε-Cα2,人H链C区基因的顺序为Cμ-Cδ-Cγ3-Cγ1-Cε2(pseudo基因)- Cα2- Cγ2-Cγ- Cε- Cα2(图2-13,14)。
图2-13小鼠Ig基因结构
图2-14 人Ig基因结构
2.Ig类别转换(class switch) 是指一个B细胞克隆在分化过程中,V基因不变,而CH基因片段不同重排,比较CH基因片段重排后基因编码的产物,其V区相同,而C区不同,即识别抗原的特异性相同,而Ig的类或亚类发生改变。Ig可能是通过缺失模式(deletion model)和RNA剪接(splicing)两种机制来实现类别的转换。
(三)膜表面Ig重链基因
膜表面Ig(Sm Ig)是B细胞识别抗原的受体。(Sm Ig)和分泌性Ig的H链结构相类似,所不同的是smIgH名字的羧基端多含一段穿膜的疏水性氨基酸残基和胞浆区。因此SmIgH链的转录本(transcript)要比分泌性IgH链转录本多1~2个外显子。编码H链的羧基端部分,其氨基酸残基的的数目视H链不同而有差异,如在小鼠或人SmIgμ链的这一部分长约41个氨基酸残基,而小鼠SmIgε链此区域却有72个氨基酸残基。这个区域包括三个部分:①一个酸性间隔子,与H链最后一个CH功能区相同,位于胞膜外侧;②含26个氨基酸残基的疏水区,为穿膜部分;③胞浆内部分,3~28个氨基酸残基不等。
二、Ig轻链基因的结构和重排在IgH链基因重排后,L链可变区基因片段随之发生重排。在L链中,κ链基因先发生重排,如果κ基因重排无效,随即发生λ基因的重排。L链匠CDR1、CDR2和大部分CDR3由Vκ或Vλ基因片段所编码(Vκ编码95个氨基酸残基),Jκ或Jλ基因片段编码CDR3的其余部分和第四个骨架区(Jλ编码从96位到108位氨基酸)。L链无D基因片段。
(一)κ链基因的结构和重排
κ链基因是V基因片段(Vκ)、J基因片段(Jκ)和C基因片段(Cκ)重排后组成。小鼠Vκ基因片段约有250,Jκ有5个(其中4个功能),Cκ只有1个。人Vκ基因片段约有100个,Jκ有5个。Cκ也只有1个。Vκ与Cκ之间以随机方式发生重排。
(二)λ链基因的结构和重排
κ链基因也是由Vλ、Jλ和Tλ基因片段经重排后组成。小鼠Vλ基因片段有3个:Vλ1、VλX;4个Jλ和4个Cλ基因片段,分为(Jλ2Cλ2,Jλ4Cλ和Jλ3Cλ3,Jλ1Cλ1)两组。它们的基因重排比较复杂。人Vλ约有100个,至少有6个Cλ与各自的J基因片段相连,人λ链确切的重排情况还不清楚。
三、抗体多样性的遗传学基础机体对外界环境中种类众多抗原刺激可产生相应的特异性抗体,推算出抗体的多样性在107以上。抗体多样性主要由基因控制。
1.胚系(germ line)中众多的V、D、J基因片段 在胚系上,尚未重排的Ig基因片段数量相当多,这是生物在长期进化中形成的。表2-6例举了小鼠H链和L链重排的多样性以及H链和κ链相互随机配对所推算的多样性数目。
表2-6 小鼠Ig多样性(举例)
多肽链 | 基因片段数 | V区基因重组方式 | 经重排的随机配对后*
推算的多样性数目 | |||
V | J | |||||
H链 | 1000 | 12 | 4 | V-D-J | 4.8×104 | 4.8×107 |
κ链 | 250 | - | 4 | V-J | 1.0×103 |
*多样性数目不包括VDJ连接多样性、N区插入和体细胞突变所增加的多样性数目
2.VDJ连接的多样性在L链基因重排过程中V-J连接位点有一定的变异范围,例如VL基因片段3‘端5个核苷酸CCTCC和JL基因片段5‘端4个核苷酸GTGG连接时,总共9个核苷酸中只有6个核苷酸编码L链第95、96位氨基酸,因此可产生8种不同的连接方式。在H链基因重排过程中K-J以及V-D-J连接时都可有连接多样性的存在。
3.体细胞突变(somaticmutation)体细胞在发育过程中可发生基因突变。以长期体外培养的B细胞前体为例,每个细胞每个碱基对的突变率约为1~43×10-5,这种点突变主要发生在V基因。体细胞突变扩展了原有胚系众多基因片段重排的多样性。
4.N区的插入在IgH链基因片段重排过程中,有时可通过无模板指导的机制(nontempletdirected mechanism),在重组后D基因片段的两侧即VH-DH或DH-JH连接处额外插入称为N区的几个核苷酸。N区不是由胚系基因所编码。在N区插入前,先通过外切酶切除VH-DH或DH-JH连接处几个碱基对,然后通过末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase,TdT)连接上N区。由于额外插入了N区,可发生移码突变(fuame shift mutation),使插入部位以及下游的密码子发生改变,从而编码不同的氨基酸,大大地增加了抗体的多样性。
5.L链H链相互随机配对 如表2-6所示,小鼠H链和κ链随机配对后推算其多样性可达4.8×107,如果再加上H链与λ链的随机配对其多样性应更多了。